翻訳と辞書
Words near each other
・ Bismillah ceremony
・ Bismillah Chowk
・ Bismillah Khan
・ Bismillah Khan (cricketer)
・ Bismillah Khan (politician)
・ Bismillah Khan Mohammadi
・ Bismillapur
・ Bismite
・ Bismo
・ Bismoclite
・ Bismoi
・ Bismole
・ Bismoll
・ Bismullah v. Gates
・ Bismuna Raya Lagoon Natural Reserve
Bismut connection
・ Bismuth
・ Bismuth bronze
・ Bismuth chloride
・ Bismuth ferrite
・ Bismuth fluoride
・ Bismuth germanate
・ Bismuth hydroxide
・ Bismuth Indium
・ Bismuth oxychloride
・ Bismuth oxynitrate
・ Bismuth pentafluoride
・ Bismuth phosphate process
・ Bismuth selenide
・ Bismuth silicon oxide


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Bismut connection : ウィキペディア英語版
Bismut connection

In mathematics, the Bismut connection \nabla is the unique connection on a complex Hermitian manifold that satisfies the following conditions,
# It preserves the metric \nabla g =0
# It preserves the complex structure \nabla J=0
# The torsion T(X,Y) contracted with the metric, i.e. T(X,Y,Z)=g(T(X,Y),Z), is totally skew-symmetric.
Bismut has used this connection when proving a local index formula for the Dolbeault operator on non-Kähler manifolds. Bismut connection has applications in type II and heterotic string theory.
The explicit construction goes as follows. Let \langle-,-\rangle denote the pairng of two vectors using the metric that is Hermitian w.r.t the complex structure, i.e. \langle X,JY\rangle=-\langle JX,Y\rangle. Further let \nabla be the Levi-Civita connection. Define first a tensor T such that T(Z,X,Y)=-\frac12\langle Z,(\nabla_J)Y\rangle . It is easy to see that this tensor is anti-symmetric in the first and last entry, i.e. the new connection \nabla+T still preserves the metric. In concrete terms, the new connection is given by \Gamma^_-\frac12 J^_\nabla_J^_ with \Gamma^_ being the Levi-Civita connection. It is also easy to see that the new connection preserves the complex structure. However, the tensor T is not yet totall anti-symmetric, in fact the anti-symmetrization will lead to the Nijenhuis tensor. Denote the anti-symmetrization as T(Z,X,Y)+\textrmX,Y,Z=T(Z,X,Y)+S(Z,X,Y), with S given explicitly as
:S(Z,X,Y)=-\frac12\langle X,J(\nabla_J)Z\rangle-\frac12\langle Y,J(\nabla_J)X\rangle.
We show that S still preserves the complex structure (that it preserves the metric is easy to see), i.e. S(Z,X,JY)=-S(JZ,X,Y).
:\begin
S(Z,X,JY)+S(JZ,X,Y)&=-\frac12\langle JX, \big(-(\nabla_J)Z-(J\nabla_ZJ)Y+(J\nabla_YJ)Z+(\nabla_J)Y\big)\rangle\\
&=-\frac12\langle JX, Re\big((1-iJ)()\big)\rangle.\end
So if J is integrable, then above term vanishes, and the connection
:\Gamma^_+T^_+S^_.
gives the Bismut connection.


抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Bismut connection」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.